## How to find the Least Common Multiple of 46 and 50?

On this page below, we'll use the Prime Factorisation, and the List of Multiples method to find out the LCM of 46 and 50.

Follow the steps below, and let's calculate the LCM of 46 and 50.

### Method 1 - Prime factorization

#### Step 1: Create a list of all the prime factors of the numbers 46 and 50:

##### Prime factors of 46

The prime factors of **46** are **2 and 23**.
Prime factorization of **46** in exponential form is:

**46** = 2^{1}x23^{1}

##### Prime factors of 50

The prime factors of **50** are **2, 5 and 5**.
Prime factorization of **50** in exponential form is:

**50** = 2^{1}x5^{2}

#### Step 2: Identify the highest power of each prime number from the above boxes:

2^{1}, 23^{1}, 5^{2}

#### Step 3: Multiply these values together:

2^{1}x23^{1}x5^{2}=**1150**

#### Step 4: The result:

As seen on the calculation above, we have now obtained the LCM of 46 and 50.

The Least Common Multiple of **46 and 50** is **1150**.

### Method 2 - List of Multiples

Find and list multiples of each number until the first common multiple is found. This is the lowest common multiple.

#### Multiples of **46**:

46, 92, 138, 184, 230, 276, 322, 368, 414, 460, 506, 552, 598, 644, 690, 736, 782, 828, 874, 920, 966, 1012, 1058, 1104, 1150, 1196, 1242, 1288

#### Multiples of **50**:

50, 100, 150, 200, 250, 300, 350, 400, 450, 500, 550, 600, 650, 700, 750, 800, 850, 900, 950, 1000, 1050, 1100, 1150, 1200, 1250, 1300

#### Therefore,

LCM(46, 50) = **1150**